
Abstract. In this paper we propose and numerically
implement a speci®c scheme for calculating the excita-
tion energies (EEs) within the Fock space multireference
coupled cluster framework, which includes the contri-
butions from noniterative triples cluster amplitudes.
These contribute to the EEs at the third order. We
present results for CH� and N2, and study the e�ects of
these noniterative triples on EEs.

Key words: Excitation energies ± Fock space ±
Multireference coupled cluster theory ± Triply excited
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1 Introduction

The single reference coupled cluster (SRCC) [1±4]
method has already been established as a compact and
e�cient formulation for incorporating the dynamical
correlation in electronic structure calculations for non-
degenerate or closed-shell systems, where a single
determinant can be an appropriate starting point for
the cluster expansion. Di�erent versions of the SRCC
method with increasing precision have been developed
[5]. Further recent technical innovations, viz. more
e�cient solution algorithm [6] and analytic derivative
formulation [7], have made the SRCC method a
powerful technique for the calculation of electronic
energies and other properties [8±12] in the region around
the equilibrium of closed-shell systems. The SRCC
method with appropriate single-determinant model
spaces can even be used for some limited open-shell
cases like high-spin open-shell systems.

However, there are many situations which demand a
multideterminant description of the model space, either
as a consequence of symmetry or due to strong mixing,

stemming from quasi-degeneracy. Typical examples
are the excited states, bond-breaking situations and, in
general, potential energy surface (PES) of even closed-
shell systems away from equilibrium. In these cases the
SRCC method su�ers from the necessity to include high-
rank cluster operators and also from what is known as
the ``intruder state'' problem. To take care of such sit-
uations, it is necessary to start with a reference model
space consisting of several determinants. The consequent
coupled cluster (CC) developments, known as multiref-
erence coupled cluster (MRCC) theories, have appeared
in the literature over the last two decades and mostly use
the concept of an e�ective Hamiltonian and generalized
Bloch equation. Extensive discussion of MRCC theories
will be found in the review by Mukherjee and Pal [13].
The e�ective Hamiltonian-based MRCC theories can
describe several states in a single calculation. These are
primarily divided into valence-speci®c [14±16] and va-
lence-universal (VU) [13, 17±29] varieties. While the
former type is well-suited for the description of a speci®c
state, the VUCC theories use a VU wave operator and a
common vacuum description. Using a subset of holes
and particles as active orbitals, the model-space deter-
minants are classi®ed into di�erent active hole-particle
sectors. While there are some advantages in a common
vacuum description, it also contributes to the practical
disadvantages of having to ®nd states with lower hole-
particle sectors when they are of no interest to us. There
have been some recent attempts at removing these dif-
®culties even within the common vacuum framework
[24]. The VUCC method can be used to study the PES
of systems which can be described by a low hole-par-
ticle sector with respect to an appropriate vacuum, but
it can still su�er from the intruder state. The VUCC
theories, however, are the methods of choice in the
study of ions or low-lying excited states of closed-shell
systems.

With the N-electron restricted Hartree-Fock (RHF)
state as vacuum, the VUCC methods have been used for
the description of the ionization potential (IP) [25, 26,
29] and low-lying ecitation energies (EEs) [27, 28] of
closed-shell N-electron systems in a direct manner usingCorrespondence to: S. Pal
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only one- and two-body cluster operators. Terms
coming from the triply excited amplitudes are com-
pletely missing in this initial development. From a
perturbative point of view, some of these terms con-
tribute ®rst at the third order and their neglect entails
errors of at least the third order. The full inclusion of
the triple excitations resulting in the in®nite partial
summation of these terms is, however, computationally
expensive at this stage. On the other hand, it is com-
putationally feasible to include the triply excited am-
plitudes in an approximate way which takes care of the
leading-order corrections. For IP calculations, approx-
imate inclusion of triples in the calculations correcting
the IP values to at least third [28] and fourth order in
perturbation [29] were achieved, and these were found
to be quite signi®cant. From these considerations the
contributions of similar low-order triply excited am-
plitudes are likely to be important in the computational
scheme for calculating EEs. The objective of this paper
is to present the inclusion of these triply excited am-
plitudes using an incomplete one-hole one-particle
model space, which contributes to the EEs at least up
to the third order. There are several ways one can
achieve this we implement a speci®c version which we
denote as the multireference coupled cluster singles
doubles which we denote as �MRCCSD� � Tm(3)
scheme. We will show that this can be done by a
noniterative inclusion of the triples, which is compu-
tationally simple.

In Sect. 2 we brie¯y summarize the VUCC theory.
This will help us to introduce the notations and present
the background for Sect. 3, where we present the
equations for the inclusion of the triply excited ampli-
tudes to generate EEs correct upto the third order. We
will note that these are essentially noniterative triples.
In Sect. 4 we present some model results for N2 and
CH�, and compare these with earlier results using
singles and doubles amplitudes only and experimental
values.

2 VUCC theory: a reÂ sumeÂ

In the VUCC-based theories a convenient vacuum
(usually a RHF wave function of a neutral N-electron
closed-shell system) is chosen with respect to which holes
and particles are de®ned. The set of holes and particles is
subdivided into active and inactive subsets depending on
the problem of interest. With the de®nition of a common
vacuum, any general model space may consist of
determinants with, say, m number of active particles
and n number of active holes. In the conventional
notation, this model space is said to belong to the �m; n�
sector, where the ®rst index refers to the number of
active particles and the second index refers to the
number of active holes in the model space. The set of
correlated wave functions, Wl, corresponding to the
model space W�0�l is generated by the action of a normal-
ordered exponential wave operator on the model space.
Thus one may write

jW�0��m;n�l i �
X

i

ClijUii ; �1�

jWli � fexp�T�m;n��gjW�0�l i : �2�
Superscripts �m; n� refer to the Fock-space sector, and
the braces denote the normal ordering of the wave

operator. T
�m;n�

is an operator which can destroy any
number of active particles and holes among the subset of
m active particles and n active holes and can be written
as

T
�m;n� �

Xm

k�1

Xn

l�0
T �k;l� �3�

where T �k;l� destroys exactly k active particles and l
active holes. The wave operator X thus correlates all
lower-valence sectors. This is the reason for valence
universality. The energies are obtained as eigenvalues of
an e�ective Hamiltonian within the model space. Thus
the energies of multiple states are obtained at one time.
The e�ective Hamiltonian and the cluster operators for
di�erent valence sectors are obtained from the Bloch
equation which is given by

�HXÿ XHeff�P � 0 ; �4�
where P is the model-space projector. The projection of
the above equations to the model space de®nes the
e�ective Hamiltonian. The projection of Eq. (4) to the
virtual-space determinants yields the cluster amplitudes.
A subsystem embedding condition (SEC) is prescribed to
solve the equations of di�erent valence sectors starting
from the lowest sector upwards. The normal ordering
of the formulation ensures that in the equations of a
speci®c valence sector, the amplitudes of higher sectors
do not appear. Equations of di�erent valence sectors are
thus hierarchically decoupled. The following equations
are solved hierarchically upwards:

P �k;l��HXÿ XHeff�P �k;l� � 0 ; �5�
for k � 0; 1; . . . m and l � 0; 1; . . . n;

Q�k;l��HXÿ XHeff�P �k;l� � 0 ; �6�
for k � 0; 1; . . . m and l � 0; 1; . . . n. For the speci®c case
of low-lying excited states, we have started from the N-
electron RHF as a vacuum. The active-inactive subdi-
vision of holes and particles is usually done on the basis
of energies of the orbitals. The model space consists of
one active hole and one active particle and is thus a �1; 1�
valence-sector model space. The vacuum or the N-
electron RHF is outside the model space. The correlated

wave function W�1;1�l is obtained by the action of the

fexp�T �1;1�g wave operator. T
�1;1�

may be decomposed as

T
�1;1� � T �0;0� � T �0;1� � T �1;0� � T �1;1� ; �7�

where T �0;0� is, by de®nition, the cluster operator that
acts on a single determinantal RHF. Each of these
T-operators can again be decomposed into one, two and
three, etc. body components. For example, at the
MRCCSD level, T �0;1�; T �1;0� and T �1;1� may be written
in a singles and doubles approximation as
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T �0;1� �
X

i2ah;k 62ah

hijT �0;1�1 jkii�k

� 1=2!
X

k;l;a;i2ah

hiajT �0;1�2 jklii�a�lk � � � �

T �1;0� �
X

a2ap ;c 62ap

hcjT �1;0�1 jaic�a

� 1=2!
X

k;d;c;a2ap

hcdjT �1;0�2 jakic�d�ka� � � �

T �1;1� �
X

i2ah;a2ap

hijT �1;1�1 jaii�a

� 1=2!
X

k;c;a2ap ;i2ah

hicjT �1;1�2 jakii�c�ka� � � �

�8�

T �1;1�1 is a deexcitation operator, which acting on this
model space generates the Hartree-Fock determinant. It
has been shown [28±30] that for obtaining EEs using the
hole-particle model space, these operators are not
required. The wave function, however, contains these
operators and thus, for example, the amplitudes of these
operators will be required for obtaining the transition
amplitudes. Since our current interest is only computa-

tion of EEs, we have ignored the T �1;1�1 operators in the
present scheme. It may also be noted that the �1; 1�
model space is an incomplete model space and interme-
diate normalization (IN) has to be abandoned for the
proof of linked-cluster theorem in the Bloch equation.
However, for this special �1; 1� problem, it has been

pointed out that the [26±31] expression for the H �1;1�eff is

similar in structure to the one obtained by using IN, i.e.
PXP � P . We solve Eqs. (5) and (6) progressively from
the �0; 0� sector for m � 1 and n � 1. In the evaluation
of �HX�c in Eqs. (5) and (6), it is computationally
convenient to construct an intermediate operator H
obtained by connecting H with powers of T �0;0� in all
possible manners:

H � �HeT �0;0� �C : �9�
Two separate forms of H have been used before, one
which contains only T �0;0�2 amplitudes. This may be
referred to as the CCD form of H . The other contains
both T �0;0�1 and T �0;0�2 amplitudes. For the third-order
corrections due to the triples, which is the objective of
this paper, it is su�cient to use the CCD form of H . We
will use this form in our present scheme. In general, H
will have a closed and an open part. The closed part of H
is the ground-state energy itself. If we drop this term
from Heff, we will get the EEs directly on diagonalization
of Heff. We thus consider only the open part of H . In
earlier applications of MRCCSD we considered only
one- and two-body parts of the operator. However, for
including noniterative triples, we will need approximate
three-body parts, too. We represent one-, two- and
three- body parts of H as F ; V and W , respectively. To
evaluate the singlet and triplet excited states dominated
by single-hole particle excitations with the active orbit-
als, one diagonalizes the following spin-integrated form
of matrices HS

EE and HT
EE, respectively

�HS
EE�ap;bq � �H �0;1�eff �abdpq � �H �1;0�eff �qpdab

ÿ 2haqjHD�1;1�
eff jpbi � haqjHE�1;1�

eff jbpi; �10�
�H T

EE�ap;bq � �H �0;1�eff �abdpq � �H �1;0�eff �qpdab

� haqjHE�1;1�
eff jbpi �11�

where a; b are active-hole orbitals (spatial) and p; q are

active-particle orbitals (spatial). H �D�1;1��eff is the direct

block of the �1; 1� e�ective Hamiltonian and H �E�1;1��eff is
the corresponding exchange block. The diagrammatic
representation of these blocks is shown in Fig. 1a and b,
respectively. In the next section we present the pertur-
bative analysis of the triply excited amplitudes and a
computational scheme to include the amplitudes so that
the EEs are correct through to the third order.

3 Perturbative analysis

In this section we will derive the equations for the
inclusion of the triply excited amplitudes which contrib-
ute to EE at the third order. The calculation of the
lowest-order triples in our scheme is along the lines of
the MRCCSD� T ��3� scheme for the calculation of the
lowest-order T3 amplitudes for IPs [28]. This requires the
solution of a set of simple equations for the triple
amplitudes which are decoupled from each other as well
as from the existing singles and doubles equation.

As seen from Eqs. (10) and (11) we would like to

include the triples in such a way that H �0;1�eff , H �1;0�eff as well

as the direct and exchange blocks of H �1;1�eff are correct

through to the third order. This scheme for correcting

H �0;1�eff to the third order has already been implemented in

the MRCCSD� T �3 scheme for IPs [28]. We note that

the T �0;0�3 amplitudes do not contribute to any of the

above Heff at the third order. The leading contribution of

T �0;1�3 to H �0;1�eff comes from the term V T �0;1�3 . This appears

to be the only T �0;1�3 containing term in H �0;1�eff , which can
contribute at the third order. Thus, taking care of full
singly and doubly excited amplitudes of the �0; 1� sector,
one can write the e�ective Hamiltonian for the �0; 1�
sector as

Fig. 1. a The direct part of the H �1;1�eff and b the exchange part for the
same
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P �0;1�H �0;1�eff P �0;1� � P �0;1��HeT �0;1�
1
�T �0;1�

2

� V T �0;1�3 �P �0;1� : �12�
Similarly in this scheme the e�ective Hamiltonian for the
�1;0� sector may be written as

P �1;0�H �1;0�eff P �1;0� � P �1;0��HeT �1;0�
1
�T �1;0�

2

� V T �1;0�3 �P �1;0� : �13�
To evaluate the triply excited amplitudes of the �0;1� and
�1;0� sectors we have to consider the projection of the

Bloch equation to the Q�0;1�3 and Q�1;0�3 sectors, respec-
tively.

Q�0;1�3 �HXÿ XHeff�P �0;1�3 � 0 ; �14�
Q�1;0�3 �HXÿ XHeff�P �1;0�3 � 0 : �15�
For evaluating these amplitudes to the lowest order, we
need the following terms in each of Eqs. (14) and (15)

Q�0;1�3 �F T �0;1�3 � W ÿ T �0;1�3 F �P �0;1�3 � 0 ; �16�
Q�1;0�3 �F T �1;0�3 � W ÿ T �1;0�3 F �P �1;0�3 � 0 ; �17�
where W is the three-body part of the operator H .

Let us now examine the terms in H �1;1�eff , which derive
contributions from the three-body cluster amplitudes.
As we have discussed for the special �1;1� sector, despite
our abandoning the IN, that the expression for H �1;1�eff is

similar in structure to the one obtained in the case of IN.
This point has been discussed in detail in the Ref. [27].
We present the terms upto the triply excited level.

H �1;1�eff � P �1;1��HeT �0;1�
1
�T �0;1�

2
�T �1;0�

1
�T �1;0�

2
�T �1;1�

2

� HT �0;1�3 � HT �1;0�3 � HT �1;1�3

� HT �1;0�1 T �0;1�3 � HT �0;1�1 T �1;0�3 �P �1;1� : �18�
The terms in the bracket are the only possible terms
which can have nonvanishing contributions from the
P �1;1� model space to the P �1;1� model space. However,
since our objective is to include only those triply excited
amplitudes which correct the EEs at the MRCCSD level
to the third order, we need the matrix of Heff to be
correct through to the third order. Since, the leading

contributions to the T �0;1�3 ; T �1;0�3 or T �1;0�1 and T �0;1�1

amplitudes are at the second order, the last two terms in
the bracket need not be considered. For the same reason,
H at the second order onwards need not be considered.

So, for example, F T �1;1�3 can have a nonvanishing

contribution, but the part of F that can contract with

T �1;1�3 to give a nonvanishing P �1;1� to P �1;1� contribution,
is a hole-particle F . The dominant part of h-p F comes

from the connected products of VT �0;0�2 , and thus h-p F
starts to contribute at the second order onwards. Hence

these F T �1;1�3 terms can only contribute to H �1;1�eff from the
fourth order onwards. V T �1;1�3 , on the other hand, does
not have any nonvanishing P �1;1� to P �1;1� projections.
The same is true for the F T �0;1�3 and F T �1;0�3 terms. Thus,

we are left with the following terms coming from the
triply excited cluster amplitudes which can contribute at
the third order onwards.

H �1;1�eff � P �1;1��V T �0;1�3 � V T �1;0�3 � V T �1;1�3 �P �1;1� : �19�
Figure 2 diagrammatically depicts the above terms
contributing to H �1;1�eff . We can now consider various
approximate versions to include these terms. For
example, we may consider terms which have only
third-order contributions from the above terms. We
can, for example, devise schemes which di�er in the
inclusion of various in®nite partial summations, the
contributions of all of which will be from the third order
onwards. In this paper, we present a scheme which uses

V in Eq. (19) with the cluster amplitudes of T �0;1�3 ; T �1;0�3

and T �1;1�3 operators calculated at their lowest, i.e. second
order. These will also be obtained by using F and V .
This was the scheme used for the MRCCSD� T ��3�
calculation of IP by Pal et al. in Ref. [28]. As it turns out,
this ensures that the triply excited amplitudes have to be
calculated in a noniterative manner. In this particular

application, V in Eq. (19) contains �HeT �0;0�
2 �c with the

fully converged and T �0;0�2 amplitudes. It does not

contain the T �0;0�1 and T �0;0�3 amplitudes. The minimum

contribution from T �0;0�1 and T �0;0�3 amplitudes to V is at
the third order onwards and hence the inclusion of these

in V is not required for correction of the triples to H �1;1�eff
at the third order. To evaluate the triply excited
amplitudes of the �1;1� sector, we have to consider the

projection of the Bloch equation to Q�1;1�3 . To evaluate
these amplitudes to the lowest second order the follow-
ing terms must be considered.

Q�1;1�3 �F T �1;1�3 � V T �1;1�2 � V T �0;1�2

� W ÿ T �1;1�3 F �P �1;1�3 � 0 : �20�
In Eq. (20) we need the three-body part of H , i.e. W ,
which should be correct through to at least the second

Fig. 2. a V T �0;1�3 terms contributing to H �1;1�eff ; b the contribution of

the V T �1;0�3 term; c and d the contribution of V T �1;1�3 terms of H �1;1�eff
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order. This is obtained by considering VT �0;0�2 with the
converged values of the T �0;0�2 amplitudes. The converged
T �0;0�2 amplitudes bring in higher-order terms through
in®nite order partial summation. The equations suggest
that these triply excited amplitudes at the �0; 1�; �1; 0�
and �1;1� sectors may be obtained by a single-shot non-
iterative calculation. Thus corrections of the H �1;1�eff at
least upto the third order require a computationally
simple prescription of the evaluation of triply excited
cluster amplitudes.

4 Results and discussion

In this section we present some pilot applications of the
MRCCSD� T ��3� model to EEs. As example systems
we choose N2 and CH� molecules for which earlier
MRCCSD results of low-lying EE exist. For N2, the
Huzinaga-Dunning double-zeta basis augmented by a
set of polarized d-functions on each N atoms (with
exponent 0.0930) has been used. The calculations of the
vertical EE have been performed at the near experi-
mental bond distance of R � 2:74 a.u. We should point
out that the earlier MRCCSD results of N2 presented in
Ref. [27] were obtained by freezing the two lowest
occupied and the two highest virtual orbitals in the
basis set right from the stage of the ground-state CC
calculations. But we have done the present calculations
without freezing these orbitals at the level of the ground-
state CC calculation. Only at the state of the (0,1), (1,0)
and (1,1) sector have the lowest two occupied and the
highest two virtual orbitals been frozen. These
MRCCSD results with the present freezing scheme have
been presented under the MRCCSD heading. The T*(3)
results in Table 1 have also been obtained at this level.
MRCCSD as well as MRCCSD+T*(3) calculations

have been performed using only one- and two-body
parts of CCD H . Two active-hole orbitals 3rg and 1pu
and one active particle 1pg are employed in our
calculations. Since we are interested in describing the
low-lying states dominated by single excitations from
3rg and 1pu to 1pg orbitals, this model space is adequate.
Even with a larger set of active orbitals, the VUCC
method will produce the same results for these states.
The experimental vertical EEs reported here are as
quoted by Nielsen et al. [30] from a calculation of the
numerical solution of the Schrodinger's equation using
the rovibronic constants given by Huber and Herzberg
[31]. We have tabulated the singlet and triplet EEs for
transitions dominated by 3rg ! 1pg and 1pu ! 1pg. In
the absence of full con®guration interaction (FCI)
results the experimental numbers are presented here
only as indicative comparisons. We ®nd that most of the
results in the T ��3� scheme are less than the MRCCSD
numbers. It is also observed that even in the T ��3�
scheme the 3rg to 1pg EEs are poorly obtained. On the
other hand, it is encouraging to note that the EEs
dominated by 1pu to 1pg improve in comparison to the
experimental values in the T ��3� scheme. In this sense,
the trend is not exactly the same as the one obtained by a
similar scheme for IPs. However, since the basis set is
not saturated, comparison with the experimental values
may not be indicative of quality of the scheme.

Table 2 presents the EEs for CH� at an equilibrium
distance �R � 2:13713 a.u.�. The basis set used contains
5S type and 3P type functions contracted from a prim-
itive set of 9S and 5P Gaussian functions augmented by
a set of d functions having 0.75 as an exponent [32].
Similarly, for hydrogen a 3S set contracted from primi-
tive 5S type functions is used with a set of P -functions
having an exponent of 1.0. One- and two-body parts of
CCD H have been used. A 3r active hole and a 1p active

Table 1. Vertical excitation energies (EEs) for N2 in a double-zeta polarized basis �R � 2:074 a.u.� All energies are in eV: TDA, Tamm
Danco� Approximation; RPA, Random phase approximation; MRCCSD, Multireference coupled cluster singles doubles

State TDA RPA MRCCSD T*(3) Expt.

B3Pg�3rg ÿPg� 7.94 7.58 8.03 7.09 8.1
a1Pg�3rg ÿPg� 9.94 9.27 9.37 8.92 9.3
A3R�u �1Pu ÿ 1Pg� 3.45 7.60 7.93 7.51 7.8
B3Rÿu �1Pu ÿ 1Pg� 7.93 9.92 10.03 9.63 9.7
W 3Du�1Pu ÿ 1Pg� 7.35 5.92 9.12 8.70 8.9
a01Ru�1Pu ÿ 1Pg� 8.51 7.93 10.17 9.76 9.9
x01Du�1Pu ÿ 1Pg� 9.09 8.81 10.65 10.24 10.3
b01R�u �1Pu ÿ 1Pg� 16.27 15.54 14.4

Table 2. Vertical EE for CH+ at �R � 2:13713 a.u.�. FCI, full con®guration interaction; C, 5S3P1D ad � 0:75; H, 3S1P ap � 1:0

State With freezingb Without freezingb FCIa,b

MRCCSD T*(3) MRCCSD T*(3)

DES�X 1R� ÿ A1P� 3.18 3.11 3.16 3.09 3.23
(3.07)

DET �X 1R� ÿ 3P� 1.05 0.83 1.03 0.80 Ð

a See Ref. [35]; experimental values are quoted in parentheses
bAll energies are in eV
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particle have been chosen in this calculation. We have
reported the EEs for two cases: (1) without any freezing
(2) with freezing of the lowest-occupied and the highest
virtual orbital only from the �0; 1�; �1; 0� and �1; 1� sector
calculation. We compare our results with experimental
as well as FCI values. The values in parentheses cor-
respond to the experimental values. It can be seen that
with freezing, the MRCC as well as MRCC� T ��3�
values are 0.02 eV higher than the values without
freezing for the single state. However, for the triplet this
di�erence is nearly 0.22 eV. For triplet states, the FCI
as well as the experimental values are not available, but
for the singlet it can be seen that the values in
MRCCSD� T ��3� scheme are going in the right direc-
tion compared to the experimental numbers. However,
when benchmarked against the FCI values one notices
that the MRCCSD� T ��3� results correct the
MRCCSD values in the wrong direction.

Even in the MRCCSD� T ��3� scheme to obtain IPs,
we observed [28] that the third-order triples often made
the IP values go in the wrong direction. This, was rooted
to the general problem of convergence in the perturba-
tion series. For IPs, a further inclusion of triples to the
fourth order as shown by Vaval et al. [29] corrected the
IPs signi®cantly. Such e�ort for EEs are worth under-
taking.
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